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Abstract

This paper investigates the characteristics of building vibrations induced by adjacent moving trucks using finite element

analyses. A finite element is developed to simulate complicated vehicles, and theoretical as well as experimental methods are

used to validate it. The parametric study indicates that road irregularity is the major cause of truck vibrations around their

vertical natural frequencies. If the natural frequencies of the truck approach the building’s natural frequencies, resonance

occurs, and building vibrations increase. To reduce building vibrations generated by moving trucks, road roughness should

be as small as possible. A simpler method to reduce truck vibrations is to slow down the truck. Moreover, the coincidence of

the building’s first natural frequency and the truck’s vertical natural frequency should be avoided.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Ground vibrations induced by road traffic are a major environmental issue, especially for near-by hospitals
and high-tech industries, since such vibrations may affect surgery or high-tech production. Moreover, large
vibrations are uncomfortable for people. Thus, predicting the response of buildings induced by road traffic
vibration is becoming increasingly important. Hunaidi and Tremblay [1] performed measurements and
analyses of building vibration induced by road traffic, and the levels were evaluated with reference to human
annoyance and the potential for building damage using existing standards. Maeda et al. [2] recorded road
traffic-induced building vibrations continuously for 24 h, both outside and inside a building. Several
alternative objective methods of quantifying the severity of exposure to whole-body road traffic-induced
building vibration were used. Clemente and Rinaldis [3] analyzed the traffic-induced vibrations in the
basement of a building. Wave propagation in the soil around the building in the presence of anti-vibration
paving was compared with that in the absence of such paving. Hao and Ang [4] presented an analytical
method to estimate the power spectral densities of traffic-induced ground vibrations, which are assumed to
consist of primarily Rayleigh waves induced by moving forces that propagate along the surface of an elastic
homogeneous half-space. Hao et al. [5] presented traffic-induced ground vibrations measured at four soil sites.
Their characteristics in terms of the site conditions and distance to road center were discussed. Lombaert et al.
[6] made a numerical model of free field traffic-induced vibrations during the passage of a vehicle on an uneven
ee front matter r 2008 Elsevier Ltd. All rights reserved.

v.2008.10.031

6 2757575x63119; fax: +886 6 2358542.

ess: juju@mail.ncku.edu.tw

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2008.10.031
mailto:juju@mail.ncku.edu.tw


ARTICLE IN PRESS
S.-H. Ju / Journal of Sound and Vibration 321 (2009) 837–853838
road, which subjected the vehicle to vertical oscillations that cause dynamic axle loads and vibrations. Hunaidi
et al. [7] investigated the effect of bus suspension systems on building vibrations with the results showing that
the dynamic component of pavement loads induced by the two buses were significantly different, but the
difference in building vibration levels was not as significant. Lombaert and Degrande [8] validated a numerical
model for the prediction of traffic-induced vibrations using experiments, in which the vibrations in the free
field, generated by the passage of a vehicle on an uneven road, were predicted. Crispino and D’apuzzo [9]
described the measurements of road traffic-induced vibrations in a building, which they then related to vehicle
type and speed and compared with values obtained by a modified prediction model. Lombaert et al. [10]
studied the influence of soil stratification on the free field vibrations generated by the passage of a vehicle on
an uneven road. A two-stage solution procedure was applied for the numerical prediction of the free field
traffic-induced vibrations. Clouteau et al. [11] computed free field vibrations induced by train or road traffic,
in which the excitation was either deterministic or stochastic. Schevenels et al. [12] described the influence of
seasonal variations of the groundwater table on free field traffic-induced vibrations. The passage of a truck on
two types of road unevenness was considered. Pyl et al. [13] focused on the coupling of a validated source
model for free field traffic-induced vibrations to a receiver model that enables one to predict the response of
buildings. Xu and Hong [14] presented a framework for quantifying traffic-induced building vibration in a
stochastic way with the results showing that traffic-induced ground vibration impedes the normal operations
of a high-tech facility.

In the literature, the time-domain finite element method is not often used to simulate building vibrations
induced by road traffic. Moreover, the characteristics of vehicle-induced vibrations for buildings are seldom
clearly discussed. In this paper, a three-dimensional (3D) vehicle element is developed, and the time-domain
finite element analyses are performed to investigate the behavior of the vehicle-induced building vibration. The
major advantage of this method is that the numerical procedure is exactly the same as the traditional finite
element analysis. In addition, the effects and relationships among road irregularities, truck speeds, truck
natural frequencies and building natural frequencies were all investigated in this study.

2. 3D vehicle finite element formulation

Vehicles contain car bodies, bogies, wheel-axis sets, springs, and dampers, which are modeled as the
combination of moving wheel elements, spring-damper elements, lumped masses and rigid links. The vehicle
is assumed to move in the X direction (road direction), the vertical direction is in the Z direction, and the
Y direction is perpendicular to the road.

2.1. Moving wheel element

The contact behavior between the road and wheel is modeled by a stiffness kr, whose direction can be in the
global X (road direction), Y, or Z direction. Ju et al. [15] developed a wheel element on the targets of two-node
beam elements to solve the problem of trains moving on rails. In this study, vehicle wheels directly contact a
road that is modeled by 3D 8-20-node isoparametric elements, so the target surface is the four to eight
variable-number-node surface, as shown in Fig. 1. Stiffness kr can be set to the average stiffness of the contact
layer or a large value to ignore the contact behavior. A major disadvantage of this element is that the contact
location is only a point, so the displacement at this contact point will increase when the element size decreases.
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Fig. 1. Moving wheel element with a four to eight variable-number-nodes surface.
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Fig. 2. Modeling a wheel contact region using several moving wheel elements with appropriate spring constants and element spaces (BffiS,

where B ¼ spring space and S ¼ soil element size).
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To overcome this problem, nonlinear contact analysis should be performed. However, it is extremely difficult
to model the road irregularity and wheel geometry well. An alternative is to model a wheel using several
moving wheel elements with appropriate spring constants and element spaces, and the smallest soil element
size is larger than or similar to the average space of the spring elements. An example is shown in Fig. 2, in
which a wheel is modeled by three elements with the spring element space similar to that of the soil element. It
should be noted that more elements for a wheel will obtain more realistic results, but will require more CPU
time. The element stiffness in one of the X, Y, or Z direction is:

½S� ¼ ½T �T½T �kr (1)

where ½T � ¼ ½1 �N1 �N2 �N3 �N4 �N5 �N6 �N7 �N8� and N1–N8 are the interpolation functions
of four to eight variable-number-node two-dimensional isoparametric element [16]. The equilibrium vehicle
load F in the Z (vertical) direction should be transformed into nodes 1–8 to obtain the force vector {f},
as follows:

ff g ¼ ½N1 N2 N3 N4 N5 N6 N7 N8�
TF (2)

Wheel elements with a damper or mass will produce an unsymmetrical stiffness matrix, because the velocity
field of node 2 requires the derivation of shape functions. To overcome this problem, only the stiffness was
used in this study. Consequently, the spring-damping and lumped mass elements discussed in the next section
can be connected to this element directly. To evaluate the irregularity between the road and wheel, the element
forces {fr} of Eq. (3) must be added to the global force vector.

ff rg ¼ ½T �
TkrrðX Þ (3)

where r(X) is a function of the road or rail irregularity that will be further discussed in Sections 3.1 and 4.3,
and X is the wheel location in the moving wheel direction (X axis).

One could omit the interaction between the vehicle and the road, as the road is much stiffer than the vehicle.
Thus, the dynamic loads could also have been calculated by considering the truck passing on a rigid, uneven
road, which significantly simplifies the analysis, and gives a correct result in the case of road traffic. However,
if one wants to know the ground vibration induced by the road traffic, the interaction between the vehicle and
the road is still necessary.

2.2. Spring-damper, lumped mass and rigid link

The spring-damper element contains stiffness kv and damping cv in the X, Y, or Z direction. The stiffness or
damping matrix of this element is

½S� ¼
s �s

�s s

� �
(4)

For the damping matrix s ¼ cv, and for stiffness matrix s ¼ kv. [S] can be directly added to the global stiffness
or damping matrix. The lumped mass matrix of a rigid body at its gravity center is a standard diagonal matrix,
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as follows:

½S� ¼ ½\ m m m Ix Iy Iz \� (5)

where m is the mass, and Ix, Iy, and Iz are the moments of inertia in three global directions, respectively.
Rigid links connect the above finite elements with rigid bodies. For small deformation in a rigid body, if the

force FS
i is known in the global i direction (i ¼ X, Y or Z) at a slave node, the force and moments at the mass

center, called the master node, can be calculated as follows:

FM
i ¼ FS

i (6)

MM
Y

MM
Z

( )
¼
�DZ

DY

� �
FS

X ;
MM

X

MM
Z

( )
¼

DZ

�DX

� �
FS

Y and
MM

X

MM
Y

( )
¼
�DY

DX

� �
FS

Z (7)

or

fMMg ¼ fDgFS
i ¼

D1

D2

( )
FS

i (8)

where ðDX ;DY ;DZÞ is the coordinate difference between the master and slave nodes, and MM
X ;M

M
Y ; and MM

Z

are the master-node moments in the X, Y, and Z directions, respectively.
For an n-degree-of-freedom mass, the damping or stiffness matrix ([SS]) and the force vector ({FS}) with a

slave degree of freedom, [SM] and {FM}, respectively, at the master node are:

½SM� ¼
½I �

½0�1 ½D� ½0�2

" #
½SS�

½I �

½0�1 ½D� ½0�2

" #T
or ½SM� ¼ ½T �½SS�½T �T (9)

fFMg ¼ ½T �fFSg (10)

where [I] is the n by n unit matrix, [0]1 and [0]2 are zero matrices, and [D] is obtained from Eq. (8). For a one-
dimensional spring or damper, whose two sides, L and R, are connected to two master nodes, and the
direction of side L to R is the positive global X, Y, or Z direction, the stiffness or damping matrix can be
calculated as follows, using Eqs. (4) and (9).

½S� ¼ sfBgfBgT (11)

where fBgT ¼ ½1 � 1 DR
1 DR

2 �DL
1 �DL

2 �, DR
1 , DR

2 , DL
1 , and DL

2 are the D1 and D2 of Eq. (8) at sides R
and L, respectively. If there is no connection with a master node at side R or L, the two terms of that side can
be removed from vector {B} or just set to zero.

2.3. Finite element model and validation

We assume that all the displacements, velocities, and accelerations at vehicle nodes in the motion (X)
direction are relative to the current averaged displacement, velocity, and acceleration of the vehicle,
respectively. The stiffness and damping forces of vehicles are independent of the average vehicle displacement
and velocity, so the unknown terms change to the relative displacement and velocity. The mass forces due to
the average vehicle acceleration in the motion direction can be calculated explicitly as inertia forces (masses
multiplied by average vehicle acceleration). Thus, all the mass locations at vehicles are subjected to inertia
forces in the negative acceleration direction [17]. After the above procedure, vehicle stiffness matrices are
added to the finite element model with 3D solid or beam elements producing a linear small-displacement finite
element analysis, and the moving train dynamic analysis with large dof can be found in the references [18,19].

In Fig. 3, the two-axle vehicle moving on a simply supported beam was analyzed to validate this finite
element model, where the vehicle has four dof moving with a uniform speed of 30m/s on a simply supported
bridge 25m long. The input data are: the cross section of the beam is a square shape with a size of 1m, the
mass per unit length is 1E4 kg/m, and Young’s modulus is 2E11N/m2. The vehicle data shown in Fig. 3 are
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Fig. 3. A two-axle vehicle moving on a simply supported beam.

Table 1

Input parameters of the bridge and vehicle from Section 3 and Fig. 3.

Parameter Description Value

m3 Mass of sprung part of vehicle 18E3kg

m1, m2 Mass of unsprung part of vehicle 1E3 kg

K1, K2 Spring constant of ties 2E10N/m

C1, C2 Spring constants for the two axles 8E6N/m

P1, P2 Weight of unsprung part of vehicle 9.8E4N

I Mass moment of vehicle inertia 1E5m4

D Vehicle axle base 14m

D1, D2 Horizontal distance between the centroid of sprung mass and unsprung mass 7m

Cb1, Cb2 Viscous damping for the two axles 2E4N s/m
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listed in Table 1. Fryba [20] generated the theoretical equations for this problem, which can be solved
numerically using Newmark’s method.

For finite element solutions, the vehicle is modeled by two wheel elements, two spring-damper elements, and
a lumped mass. The master node is located at the center of the lumped mass, and the upper nodes of the two
spring-damper elements are slaved nodes controlled by this master node. Three finite element meshes were
generated to model the simply supported beam. Case 1 is the regular mesh (Fig. 4a) with 20-node
isoparametric elements, case 2 is the irregular mesh (Fig. 4b) with 20-node isoparametric elements, and
case 3 is the regular mesh (Fig. 4a) with 8-node incompatible isoparametric elements. Newmark’s method and
a consistent mass scheme were used to solve this problem with the two Newmark constants and time
step lengths of 0.25, 0.5, and 0.002 s. The road roughness in the vertical directions was modeled by the
following equation.

rðX Þ ¼
ar

2
sinð2pX=LrÞ (12)

where ar is the amplitude of the road irregularity and Lr is the wavelength of the road irregularity. This study
set ar ¼ 0.01m and Lr ¼ 3m.

Fig. 5 shows a comparison of the displacements on beam and mass centers using Fryba’s [20] and finite
element solutions. Since the dashed and solid lines overlap, this figure indicates that the two solutions are
almost identical. Moreover, regular, irregular, high-order, and incompatible meshes produce similar finite
element results.
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.

Fig. 4. Finite element meshes of the simple beam in Fig. 3: (a) regular mesh and (b) irregular mesh

Fig. 5. Comparison of Fryba’s [20] and finite element solutions for a two-axis vehicle passing a simply supported beam with road

roughness: (a) beam center displacement and (b) master center displacement.
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3. Investigating traffic induced vibrations using finite element analyses

3.1. Illustration of vehicle, road, soil, and building

The vehicle adopted in this study is a 35.9-T truck, whose dimensions, damping, and mass are shown in
Fig. 6. The damping and stiffness values were obtained from the truck company, and a static loading test was
used to validate the vertical stiffness values that are the most sensitive parameters for the truck vertical
frequencies. A large stiffness of 1E6 kN/m was used between the road and wheel, which means that the
stiffness is only used as a penalty constant and the flexibility of road and wheel contact is ignored. The first
and second vertical natural frequencies of the truck are 2.6 and 3.3Hz, respectively. In the finite element
model, each wheel set of the truck is modeled by three spring-damper elements in the X, Y, and Z directions,
the connection between the car head and truck is also modeled by three spring-damper elements in the X, Y,
and Z directions, and the car bodies are modeled by two rigid bodies with a lumped mass at each mass center.
The road has two lanes, for a total width of 7m (3.5m each lane), and a 30 cm thick asphalt layer with
Young’s modulus of 10Gpa, Poisson’s ratio of 0.25, and mass density of 2.0 T/m3. The road irregularity is
modeled using the following equation [21]:

rðX Þ ¼
XN

k¼1

ak cosð2pf kX þ fkÞ (13)

where ak (m) is the amplitude of the cosine wave, fk (cycles/m) is a frequency within the interval [f1,fu]
(cycles/m) in which the power spectral density function is defined, fk is a random phase angle with uniform
probability distribution in the interval [0,2p], X (m) is the global coordinate measured from the original point,
and N is the total number of terms used to build up the road irregularities. The parameters ak and fk are
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Fig. 6. The dimensions and mass of the adopted truck (total mass ¼ 35.9T, six wheels each with a spring-damper and a mass of 0.12T).

Table 2

Road surface classification.

Road surface condition A (m2/(m/cycle))

Very good Ap0.24�10�6

Good 0.24�10�6oAp1�10�6

Average 1�10�6oAp4�10�6

Poor 4�10�6oAp16�10�6

Very poor 16�10�6oA
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computed, respectively, using [22,23]

ak ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Grðf kÞDf

p
; k ¼ 1; 2; . . . ;N (14)

f k ¼ f l þ ðk � 1=2ÞDf ; k ¼ 1; 2; . . . ;N (15)

Df ¼ ðf u � f lÞ=N (16)

Grðf Þ ¼ Af �b for f40:05 cycles=m and Grðf Þ ¼ Að0:05Þ�b for fp0:05 cycles=m (17)

where Gr(f) (m
3/cycle) is the power spectral density function, A (m3/cycle) is the spectral roughness coefficient

as shown in Table 2, the exponent b is 2 (based on the international organization for standardization (ISO)), fu
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Fig. 7. The three buildings used in the finite element analysis: (a) building case 1, (b) building case 2 and (c) building case 3.

Table 3

Building structure data.

Building case 1 Building case 2 Building case 3

Stories above ground 3 6 12

Stories under ground 1 1 1

Column size (m) 0.6� 0.6 0.8� 0.8 0.9� 0.9

Beam size (m wide�depth) 0.6� 0.4 0.7� 0.4 0.8� 0.5

Foundation beam size (m) 0.5� 1.5 1� 2.0 1� 3

Slab thickness (m) 0.12 0.12 0.12

Foundation slab thickness (m) 1.5 2.0 3

Depth of retaining wall (m) 10 10 10
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and fl (cycles/m) are the upper and lower limits of the frequency f, respectively, and N is a sufficiently large
integer. In this study, the parameters are N ¼ 1000, fl ¼ 0.01 cycles/m, fu ¼ 3 cycles/m, and A ¼ 0.24�
10�6–40� 10�6m3/cycle for various numerical analyses.

The location was the Tainan Science Park in southern Taiwan, which contains a soil profile of 10m
inorganic clays of low to medium plasticity, 40m silty sands, and the rest is very hard sand. The Young’s
modulus of the surface soil is 0.75E5 kN/m2, and that of the soil more than 50m deep is 8E5 kN/m2. Linear
interpolation was applied to determine the Young’s modulus between these two depths. The mass density and
Poisson’s ratio of the soil are 2T/m3 and 0.48, respectively. The soil shear wave speeds are approximately
250m/s for the 3Hz wave. The two factors of Rayleigh damping ([damping] ¼ a[mass]+b[stiffness]) a and b
for the soil equal 0.78 s�1 and 3.7� 10�4 s, respectively, which gives an approximately 2 percent damping ratio
at frequencies of 4 and 15Hz. Shaker experiments were performed to measure the above soil damping using
different load frequencies from 2 to 25Hz, and the least-squares method [24] was used to find a and b by fitting
the measured vibration data. An earlier experiment in Ref. [24] concentrated on frequencies from 2 to 25Hz
with a good estimation of the soil damping. This frequency range often generates low-frequency waves within
the major part of vehicle-induced vibration.

Three buildings with mat foundations, as shown in Fig. 7 and Table 3, were analyzed. Building case 1 is a
three-story factory, case 2 is a six-story building, and case 3 is a 12-story building. They all have the same
building plane of 66m by 54m with a column spacing of 6m in both the X and Y axes. The distance between a
building and the road edge is 14m. The story height, both above and underground, is 4m. A 10m retaining
wall, with a thickness of 0.6m, was built underground around the building. Column, beam, and slab sizes of
the three buildings are listed in Table 3.

The natural frequencies of the three buildings (Table 3) are shown in Table 4. In the natural-frequency
analysis, the building mesh was generated in a soil profile with the dimensions of 98� 84� 52m
(length�width� depth). Rollers perpendicular to soil profile surfaces were used, except for the upper
surface, which had the free boundary condition.
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Table 4

Natural frequencies (Hz) of the buildings shown in Table 3.

Building case Mode X direction Y direction Rotation-Z direction Z direction

1 1 1.87 1.81 1.89 15.00

1 2 6.10 6.08 6.50 16.50

2 1 1.24 1.23 1.35 12.90

2 2 4.01 3.99 4.15 13.20

3 1 0.74 0.73 0.81 7.59

3 2 2.27 2.27 2.34 8.47

3 3 3.99 3.98 4.21 9.92

Fig. 8. A typical 3D finite element mesh (1,336,592 nodes).
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3.2. Finite element model

The Newmark direct integration method and a consistent mass scheme were used to solve this problem with
the solution scheme of the symmetric successive over-relaxation (SSOR) preconditioned conjugated gradient
method [25]. The finite element model is 498m long, 429m wide, and 120m deep with a maximum solid
element size of 3m. The soil and road are modeled by 8-node 3D solid elements, the truck is modeled by the
moving wheel elements, and the five surfaces, except the top surface of the mesh, are modeled by the absorbing
boundary condition [26], which avoids spurious reflections at the boundaries of the soil domain. The nearby
building is modeled by 3D beam elements, and its floor slabs and retaining walls are modeled by assumed-
strain shell elements. Nodes connected to the 3D beam and shell elements have six dof, three translations, and
three rotations. Other nodes have three translation dof Fig. 8 shows a typical 3D finite element mesh, which
contains 1,336,592 nodes. The time step length is 0.0135 s, and 2048 time steps were simulated. This time step
is about one fifth of the 10Hz wave period, so it is accurate enough to simulate waves lower than 10Hz. The
soil wavelength for the 10Hz surface wave approximates to 22m, which is about seven times the maximum
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Table 5

Recommended vibration guidelines.

Description of use Max. level of

vibration (dB)

Description

Workshop 90 Distinctly perceptible vibration. Appropriate for workshops and non-sensitive areas

Office 84 Perceptible vibration. Appropriate for offices and non-sensitive areas

Residential day 78 Barely perceptible vibration. Appropriate for sleeping areas in most instances

Operation room 72 Vibration not perceptible. Adequate in most instance for optical microscopes to 100X

VC-A standard in semi-

conductor industries

66 Adequate in most instances for optical microscopes to 400X, microbalances, optical

balances, proximity and projection aligners, etc.

VC-D standard in semi-

conductor industries

48 Adequate in most instances for optical microscopes (TEM and SEM), microbalances,

optical balances, proximity and projection aligners, etc.
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element size (3m), so the finite element analysis should be accurate enough for wave frequencies lower than
10Hz. However, waves higher than 10Hz and lower than 30Hz still contain more than two time steps and two
maximum element sizes, so their references should be acceptable.

Analyzing vibrations using the 1
3 octave band in the frequency domain has become an international standard

in semi-conductor industries. Thus, this method, presented in decibels (dB) is utilized in this research. Table 5
briefly presents the recommended vibration guidelines [27]. A frequency-dependent dB and a total dB are used
in the subsequent figures, and the calculation procedures can be found in Refs. [27,28].

4. Illustrations and discussions of finite element results

4.1. Comparison of finite element and field experimental results

This section investigates the accuracy of the finite element analysis for the truck-induced vibrations at a free
field by comparing the field experiments and finite element analyses. There were two experimental stations at
distances of 6 and 30m from the centerline of the road lane where the truck passed. Each station had a vertical
velocity sensor that was set up to measure the vertical vibration velocities. A computer system was used to
record the velocity histories of the two stations with a sample rate of 512Hz (i.e., 512 measurements per
second).

The truck, road, and soil are the same as mentioned in Section 3.1, and only the spectral roughness
coefficient A is 0.24� 10�6m3/cycle. The finite element model is the same as that mentioned in Section 3.2, but
without the buildings in the finite element mesh. Fig. 9 shows a comparison of the vertical vibration at the two
stations between three field measurements and finite element analyses for truck speeds of 30 and 50 km/h. This
figure indicates that the accuracy of the model is acceptable. The vibration peak around the frequencies of
2–4Hz comes from the coincidence of the road irregularity frequencies and the vertical natural frequencies of
the truck, which are equal to 2.6 and 3.3Hz. The vibration peak around the frequencies of 10–20Hz is caused
by the contact forces between the road and truck wheels due to the road irregularity. As a result of the
arrangement of the truck mass, springs, and dampers, the vibration will be larger at these frequency ranges.

4.2. Effect of the truck speed

The moving vehicle is the source of vibration, so its speed plays an important role in the vehicle-induced
vibration. This section investigates the behavior of the building vibrations generated from an adjacent moving
truck with speeds of 20, 30, 40, 50, 70, 90, and 110 km/h. The properties of the truck and soil were mentioned
in Section 3.1, where the road center is 14m from the building edge, and the building analyzed is the third case,
as shown in Table 3 and Fig. 7. The road irregularity is classified as very good, as the spectral roughness
coefficient (A) is equal to 0.24� 10�6m2/(m/cycle) (Table 3). Fig. 10 shows the surface displacements of the
finite element analysis for building case 3 under the truck speed of 70 km/h, in which the most obvious
wavelength is about 80m. The major soil wave in the figure is generated from the moving truck around its
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Fig. 10. Surface displacements of a finite element analysis for building case 3 under a truck speed of 70 km/h with the displacement

magnifying factor of 3� 106 (major wavelength is about 80m).

Fig. 9. Comparisons of the vertical vibration at the two stations between three field measurements and the finite element analysis for truck

speeds of 30 and 50 km/h: (a) car speed of 30 km/h and 6m from car, (b) car speed of 50 km/h and 6m from car, (c) car speed of 30 km/h

and 30m from car and (d) car speed of 50 km/h and 30m from car.

S.-H. Ju / Journal of Sound and Vibration 321 (2009) 837–853 847
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Fig. 11. Particle total velocity dB changing with truck speed for building case 3: (a) X-direction vibration, (b) Y-direction vibration and

(c) Z-direction vibration

Fig. 12. Particle total velocity dB changing with floor level for building case 2: (a) X-direction vibration, (b) Y-direction vibration and

(c) Z-direction vibration.
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vertical natural frequencies (2.6 and 3.3Hz) with the approximate wavelengths of 90 and 70m. Fig. 11 shows
the finite element results, which indicate the following features:
(1)
 In the Y and Z directions, when the truck speed increases, the building vibrations also increase. This is due
to the increase in truck speed producing a larger power spectral density function Grðf Þ in Eq. (17) for a
certain vibration frequency (fvibration). This vibration frequency (fvibration) is equal to fV, where f is the
frequency per unit length in Eq. (17), and V is the truck speed. If the vibration frequency (fvibration) is not
changed, a larger V should come with a smaller f, which produces a larger Grðf Þ from Eq. (17). Generally,
a large power spectral density function causes large vehicle vibrations. The X-direction building vibration
is the smallest, which approximately follows this rule.
(2)
 Fig. 11 shows that the building vibration induced by a fast truck speed appears to have a limit. This is
because the power spectral density function in Eq. (17) has a limit for f at 0.05 cycles/m. Moreover, a fast
speed has a shorter duration time and may decrease vibrations near the resonance condition.
4.3. Effect of the road irregularity

This section investigates the building vibration induced by the truck due to the effect of the road
irregularity. The properties of the truck and soil were mentioned in Section 3.1, where a truck with a speed of
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50 km/h moves on a road 14m from the building edge. The building analyzed is the second case, as shown in
Table 3 and Fig. 7. The road irregularity is classified as perfectly smooth, very good, good, average, poor, and
very poor as the spectral roughness coefficient (A) equals 0, 0.24� 10�6, 1� 10�6, 4� 10�6, 16� 10�6, and
40� 10�6m2/(m/cycle), respectively (see Table 3). Fig. 12 shows the maximum total particle velocity dB
changing with floor level. This figure indicates that the truck-induced building vibration is extremely small
when the road is perfectly smooth. However, with a minor irregularity of the road under a spectral roughness
coefficient (A) classified as very good, the truck-induced building vibration is significantly increased, and its
value can reach up to 60 dB in the vertical direction. When the road is classified as average, the vertical
vibration is larger than 72 dB, which is not suitable for an operating room in a hospital, as shown in Table 5.
For this reason, undesirable vibrations of vehicles moving on roads are in large part due to the unevenness of
the road surface. The figure also indicates that the vertical building vibration is larger than the in-plane
building vibration. This condition represents a truck-induced building vibration in the worst case, because Ju
and Lin [29] indicated that a suitable mat foundation can significantly reduce the horizontal vibration
transformed from the soil, but cannot reduce vertical low-frequency vibrations. Road irregularity is the most
influential factor in producing ground vibrations induced by moving vehicles. Thus, to decrease truck-induced
vibrations, the road surface should be as smooth as possible.
4.4. Effect of building structures

This section studies truck-induced vibrations due to the effect of building structures. Shear walls and thicker
floor slabs can increase the building stiffness, so they are often used to reduce building vibrations. Thus, finite
element analyses were performed for the three building (Table 3) with a truck speed of 50 km/h and the
conditions of (1) 35 cm-thick shear walls constructed around the building (shear-wall case), and (2) the
thickness of all 12 cm floor slabs replaced by 100 cm ones (thick-slab case). Fig. 13 shows the particle
frequency-dependent velocity dB in the Y and Z directions at the roof, and Fig. 14 shows the maximum total
particle velocity dB changing with floor levels. The two figures indicate the following features:
(1)
Fig.

Z-di
Fig. 13 shows that the Y- and Z-direction vibrations are concentrated at the frequencies between 2 and
5Hz, which is caused by the truck vibrating at its vertical natural frequencies (2.6 and 3.3Hz) (see Fig. 10).
Because the building foundation slab can reduce high-frequency vibrations [29], the vibrations with
13. Particle frequency-dependent velocity dB for the three building cases (truck speed ¼ 50 km/h): (a) Y-direction vibration and (b)

rection vibration.
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Fig. 14. Particle total velocity dB changing with floor level for the three building cases (truck speed ¼ 50 km/h): (a) X-direction vibration,

(b) Y-direction vibration and (c) Z-direction vibration.
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frequencies higher than 10Hz in the Y-direction and 20Hz in the Z-direction are relatively small, so they
are not shown in the figure. The peaks of Z-direction vibrations between 7 and 20Hz are due to the first
vertical natural frequency of buildings. This figure further indicates that truck vertical natural frequencies
play an import role in vehicle-induced vibration.
(2)
 For the in-plane (X- and Y-directions) vibrations of building case 1, the thick-slab case has the smallest
vibrations, and the shear-wall case has the largest. This is because the first and second in-plane natural
frequencies of the thick-slab case are 1.5 and 5.4Hz, respectively, which is very different from the truck’s
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vertical frequencies of 2.6 and 3.3Hz. However, the first in-plane natural frequency of the shear-wall case
is 2.9Hz, which is close to the first vertical natural frequency of the truck, so resonance causes a large
vibration of the shear-wall building and demonstrates a first-mode vibration pattern, as shown in Fig. 14.
(3)
 For the in-plane vibrations of building case 2, the normal and thick-slab cases have smaller vibrations, and
the shear-wall case has the largest. The reason is similar to the above discussed; the first and second in-
plane natural frequencies of the thick-slab case are very different from the truck’s vertical frequencies, but
the first in-plane natural frequency of the shear-wall case is 2.5Hz, which is very close to the first vertical
natural frequency of the truck, so resonance causes the building vibration to be the largest and also
demonstrates a first-mode vibration pattern, as shown in Fig. 14.
(4)
 For the in-plane vibrations of building case 3, Fig. 14 shows that the normal case has the largest
vibrations. This is because the second and third in-plane natural frequencies (2.27 and 3.99Hz) of the
normal case are near the truck vertical frequencies (2.6 and 3.3Hz), which causes the building vibrations to
be large and demonstrates a third-mode vibration pattern, as shown in Fig. 14. The shear-wall case
increases the first and second in-plane natural frequencies to 1.5 and 4.2Hz, which are considerably
different from the truck’s vertical natural frequencies, so the building vibration is small.
(5)
 For the vertical vibrations, the natural frequencies of all the building cases are much larger than the truck’s
natural frequencies, so resonance is not evoked, and the building stiffness can decrease the vibration.
Fig. 14 shows that the shear-wall building has the best performance. The thick-slab building can also
decrease the vertical vibration, but the efficiency is not high compared to its cost. Moreover, the large mass
of thick slabs may decrease the building’s vertical natural frequencies. If they approach the truck’s natural
frequencies, the vertical building vibrations will be increased. This condition can be found in Fig. 14 for
building case 3 with thick slabs. However, because of the large difference between the truck and building
vertical natural frequencies, the vibration difference between the three building types is about only 2–4 dB.
(6)
 The above discussions indicate a simple fact: the vertical natural frequencies of the truck are the most
critical factor that influences the building vibration. Road irregularities evoke the truck’s vibrations
around its vertical natural frequencies. If these frequencies approach the building natural frequencies,
resonance occurs and the building vibrations are large. Moreover, the shape of the building vibration is
similar to the mode shape of the resonance building frequency. Generally, the resonance at the first
building natural frequency is the most serious. Although Ju and Lin [28] also indicated a similar resonance
phenomenon for train-induced vibration, the source of the vehicle and train frequencies is different. For
trains, the dominant frequencies come from the periodic wheel loads, while for vehicles the natural
frequencies are the most important element. To reduce building vibrations generated from adjacent
moving trucks, the road roughness should be as small as possible and the truck vibration at its vertical
natural frequency should be decreased. A simple scheme to reduce truck vibrations is to slow down the
truck speed.
5. Conclusions

This study developed a finite element method to simulate complicated 3D vehicles moving on a road, where
car bodies, bogies, wheel-axis sets, springs, and dampers are modeled by assembling moving wheel elements,
spring-damper elements, lumped masses, and rigid links. The theory and formulations of this vehicle model
are simple and can be added to standard dynamic finite element codes without difficulty. Fryba’s solution of a
simply supported beam subjected to a moving two-axle system was analyzed to validate this finite element
model. The simulations, including road irregularities and changing the mesh of solid elements, are almost
identical for the two schemes, which means that the proposed finite element model of moving vehicles is
considerably accurate. Field experiments were also used to validate the current model, and a comparison
between field experiments and finite element analyses also indicates that the current model has acceptable
accuracy.

This paper indicates that road irregularity is the major source of truck vibrations around its vertical natural
frequencies, which play an important role in field and building vibrations. If these frequencies approach the
building’s natural frequencies, resonance occurs, which causes large building vibrations. Furthermore, the
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shape of the building vibration is similar to the mode shape of the resonance building frequency. The
numerical results indicate that the resonance at the first building natural frequency is the most serious, even
when shear walls or thick slabs are used to reinforce the building. To reduce building vibrations generated
from adjacent moving trucks, the road roughness should be as small as possible, and the truck’s vibrations at
its vertical natural frequency should be decreased. More readily, truck vibrations can be reduced by slowing
down the truck speed. Moreover, the coincidence of the first building natural frequency and the truck vertical
natural frequency should be avoided. If this type of resonance does not occur, the shear-wall building has the
best performance in decreasing building vibrations.
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